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Abstract. Let c0 be the real vector space of all real sequences which

converge to zero. For every x, y ∈ c0, it is said that y is block diagonal

majorized by x (written y ≺b x) if there exists a block diagonal row

stochastic matrix R such that y = Rx. In this paper we find the possible

structure of linear functions T : c0 → c0 preserving ≺b.
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1. Introduction

Let V and W be two linear spaces and let ∼ be a relation on both of V and

W . A linear function T : V → W is said to be a linear preserver (strong linear

preserver) of ∼ if for every x, y ∈ V , Tx ∼ Ty whenever x ∼ y ( Tx ∼ Ty if and

only if x ∼ y). The topic of linear preservers is of interest to a large group of

matrix theorists, see [8] for a survey of linear preserver problems. In this paper

we shall designate by Mn, Rm and Rn the set of all n×n, 1×m and n× 1 real

matrices respectively. We recall that a matrix R ∈ Mn is row stochastic if all

its entries are nonnegative and Re = e, where e = (1, . . . , 1)t ∈ Rn. For vectors

x, y ∈ Rn, it is said that x is left matrix majorized by y (respectively xt is right

matrix majorized by yt) and write x ≺l y (respectively xt ≺r yt) if for some

row stochastic matrix R ∈ Mn; x = Ry (respectively xt = ytR). It is known
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that, for x, y ∈ Rn, x ≺l y if and only if min y ≤ minx ≤ maxx ≤ max y,

here the maximum and the minimum are taken over all components of x and

y. A characterization of linear functions T : Rn → Rp which preserve left

matrix majorization ≺l, can be found in [5, 6]. Note that the right and left

matrix majorizations are essentially different and no characterization is known

for functions T : Rn → Rp preserving right matrix majorization. There has

been a great deal of interests in studying linear maps preserving or strongly

preserving some special kinds of majorizations on some matrix spaces; for more

information about types of majorizations see [4] and [7], and for their preservers

see [1]-[3], and [5]-[6].

Definition 1.1. (a) Let {ni}
∞
i=1 be a sequence in N and let Ri ∈ Mni

be a row

stochastic matrix for every i ∈ N. Then R =
⊕∞

i=1 Ri is called a block diagonal

row stochastic matrix.

(b) For every x, y ∈ c0, it is said that y is block diagonal majorized by x

(written y ≺b x) if there exists a block diagonal row stochastic matrix R such

that y = Rx. We write x ∼b y if x ≺b y and y ≺b x.

In this paper, we find the possible structure of linear functions T on c0

preserving block diagonal majorization.

2. Block diagonal majorization

This section studies some properties of the notion of block diagonal ma-

jorization and we obtain some equivalent conditions for this concept.

Proposition 2.1. Let x, y ∈ c0. If x ≺b y, then inf y ≤ inf x ≤ supx ≤ sup y.

Furthermore if inf x = minx (respectively supx = maxx) then inf y = min y

(respectively sup y = max y).

Proof. Assume that x ≺b y, then there exists a block diagonal matrix R = (rij)

such that x = Ry, and so for every i ∈ N, xi =
∑∞

j=1 rijyj where rij ≥ 0 and
∑∞

j=1 rij = 1. It follows that inf y ≤ xi and hence inf y ≤ inf x. One can show

that supx ≤ sup y with a similar argument. Suppose that inf x = minx. We

just consider the case x, y ≥ 0. Since x ∈ c0, there exists an integer i ≥ 1 such

that inf x = min x = xi = 0. In the other hand xi =
∑∞

j=1 rijyj, rij ≥ 0 and
∑∞

j=1 rij = 1, it follows that yk = 0 for some k ∈ N and hence inf y = min y. �

For x, y ∈ Rn, one can easily show that x ≺l y if and only if min y ≤ minx ≤

maxx ≤ max y, but the following example shows that this is not true for ≺b

on c0 (the converse of Proposition 2.1 is not true).

Example 2.2. Let x = (0, 1
2
, 1
3
, . . .)t and y = (1

2
, 1
3
, . . .)t. Then x, y ∈ c0 and

inf y ≤ inf x ≤ supx ≤ sup y,

but it is easy to verify that x ⊀b y.

The following proposition gives two equivalent conditions for ≺b on c0.
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Proposition 2.3. Let x, y ∈ c0. Then the following conditions are equivalent.

(i) x ≺b y.

(ii) There exists a subsequence {kn}
∞
n=0 of sequence {k}∞k=0 with k0 = 0 such

that for every j ∈ N, (xkj+1, . . . , xkj+1
)t ≺l (ykj+1, . . . , ykj+1

)t.

(iii) There exists a subsequence {kn}
∞
n=0 of sequence {k}∞k=0 with k0 = 0 such

that for every j ∈ N,

min
kj+1≤i≤kj+1

yi ≤ min
kj+1≤i≤kj+1

xi ≤ max
kj+1≤i≤kj+1

xi ≤ max
kj+1≤i≤kj+1

yi .

Proof. (i) → (ii). Let x ≺b y. Then there exists a diagonal block matrix

R =
⊕∞

i=1 Ri such that x = Ry and Ri is a mi×mi row stochastic matrix. Put

k0 = 0 and kn =
∑n

i=1 mi then (xkj+1, . . . , xkj+1
)t = Rj+1(ykj+1, . . . , ykj+1

)t

and hence (xkj+1, . . . , xkj+1
)t ≺l (ykj+1, . . . , ykj+1

)t.

(ii) → (i). Suppose that there exists a subsequence {kn}
∞
n=0 with k0 = 0 and

(xkj+1, . . . , xkj+1
)t ≺l (ykj+1, . . . , ykj+1

)t for every j ∈ N. Then for every j ∈ N

there exists a row stochastic Rj+1 ∈ Mkj+1−kj
such that (xkj+1, . . . xkj+1

)t =

Rj+1(ykj+1, . . . , ykj+1
)t and hence x = Ry, where R =

⊕∞

i=1 Ri.

(ii) ↔ (iii) is a direct consequence of definition of ≺l.

�

3. Linear preservers of ≺b

In this section we will find the possible structure of linear functions T : c0 →

c0 which preserve ≺b. The symbol ei is used for the sequence (0, . . . , 0, 1, 0, . . .)

in c0, where 1 is in the ith place.

Proposition 3.1. Let T : c0 → c0 preserve ≺b. Suppose that a := supTe1
and b := inf Te1, then for every i ∈ N, a = supTei = maxTei ≥ 0 and b =

inf Tei = min Tei ≤ 0.

Proof. First we show that supTei = supTej and inf Tei = inf Tej for every

i, j ∈ N. By Proposition 2.3, we have ei ≺b ej and ej ≺b ei for every i, j ∈ N,

it follows that Tei ≺b Tej and Tej ≺b Tei. By Proposition 2.1, inf Tej ≤

inf Tei ≤ supTei ≤ supTej and inf Tej ≤ inf Tei ≤ supTej ≤ supTei. This

would imply inf Tei = inf Tej and supTei = supTej. To complete the proof

it is enough to show that supTe1 = maxTe1 and inf Te1 = min Te1. We

just consider the case that Te1 has only nonnegative components, so Te1 =

(t11, t21, . . .)
t ≥ 0. Since limi→∞ ti1 = 0 and ti1 ≥ 0, supTe1 = maxTe1.

Let k ∈ N be such that tk1 = a. By Proposition 2.3, e1 + e2 ≺b e1 and

hence Te1 + Te2 ≺b Te1. By Proposition 2.1, max(Te1 + Te2) ≤ maxTe1 and

consequently tk1 + tk2 ≤ max (Te1 + Te2) ≤ maxTe1 = tk1. It follows that

tk2 = 0, and hence inf Te2 = minTe2 = 0. Since e1 ≺b e2, by Proposition 2.1

we conclude that inf Te2 = minTe2 = inf Te1 = minTe1 = 0. It is clear that

b ≤ 0 ≤ a, as desired. �
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Lemma 3.2. Let T : c0 → c0 be a linear preserver of ≺b. Suppose that a and

b are as in Proposition 3.1. If tij = a (respectively tij = b) for some i, j ∈ N,

then tik ≤ 0 (respectively tkj ≥ 0) for all k ∈ N \ {j}.

Proof. Let tij = a for some i, j ∈ N. For every k ∈ N \ {j}, ek + ej ≺b e1 and

hence (Tek+Tej) ≺b Te1. Use Lemma 2.1 to write max(Tek+Tej) ≤ maxTe1.

Therefore tik+a = tik+tij ≤ max(Tek+Tej) ≤ maxTe1 = a and consequently

tik ≤ 0. �

Note that a linear function T : c0 → c0 preserves ≺b if and only if αT :

c0 → c0 preserves ≺b for every nonzero α ∈ R. Let T : c0 → c0 be a nonzero

linear preserver of ≺b. Assume that a and b are as in Proposition 3.1. Now,

we consider two cases:

Case 1; If |b| ≤ |a|. Then T ′ := 1
a
T : c0 → c0 preserves ≺b and 0 ≤ −b′ :=

minT ′ei ≤ 1 = a′ = maxT ′ei.

Case 2; If |b| > |a|. Then T ′ := −1
b
T : c0 → c0 preserves ≺b and 0 ≤ −b′ :=

minT ′ei ≤ 1 = a′ = maxT ′ei.

Consequently, without loss of generality for every linear function T : c0 → c0

preserving ≺b we may assume that 0 ≤ −b ≤ a = 1.

Definition 3.3. Let T : c0 → c0 be a linear preserver of ≺b. Assume that

a(= 1) and b are as in Proposition 3.1. For every k ∈ N, Ik := {i ∈ N : tik = 1}

and Jk := {j ∈ N : tjk = b}.

Theorem 3.4. Let T : c0 → c0 be a linear preserver of ≺b. Assume that

0 ≤ −b ≤ a = 1 are as in Proposition 3.1. Then for every k ∈ N, there exist

(i) ik ∈ Ik, such that for every j 6= k, tik j = 0.

(ii) jk ∈ Jk, such that for every j 6= k, tjk j = 0.

Proof. Let k ∈ N. For every m ∈ N there exists a large enough N ∈ N and

there exist some im ∈ Ik such that minT (−Nek+ ek+m) = −N + timk+m. It is

clear that (−Nek + ek+m) ∼b (−Nek + ek+m+ ej) for every j ∈ N\ {k, k+m}.

Then T (−Nek + ek+m) ∼b T (−Nek + ek+m + ej) and hence (−N + timk+m) =

minT (−Nek + ek+m) = minT (−Nek + ek+m + ej) ≤ (−N + timk+m + timj).

Consequently timj ≥ 0 for every j ∈ N\{k, k+m}. Use Lemma 3.2 to conclude

that timj = 0 for every j ∈ N \ {k, k +m}. Since Ik is a finite set, there exist

two distinct number m,n ∈ N such that im = in. Therefore timj = 0 for every

j ∈ (N \ {k, k +m}) ∪ (N \ {k, k + n}). Since m 6= n, timj = 0 for every j 6= k.

With an argument same as the above one may prove (ii). �

Let A be an infinite matrix. Then the row indices of A and the column

indices of A are {1, 2, . . .}. Let α and β be nonempty sets of indices {1, 2, . . .}.

A submatrix A[α, β] is a matrix whose rows have indices α among the row

indices of A, and whose columns have indices β among the column indices of

A. Now, we can prove the main theorem of this paper. For a linear operator
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T : c0 → c0, we use the symbol [T ] for the infinite matrix with Tej as jth

column, i.e. [T ] =
[

Te1
∣

∣Te2
∣

∣ . . .
∣

∣Tej
∣

∣ . . .
]

.

Theorem 3.5. Let T : c0 → c0 be a linear preserver of ≺b. Assume that

0 ≤ −b ≤ a = 1 are as in Proposition 3.1. Then one of the following holds;

(i) There exist infinite permutations P and Q such that P and bQ are subma-

trices of [T ].

(ii) [T ] is a row substochastic matrix and there exists an infinite permutation

P such that P is a submatrix of [T ].

Proof. We consider two cases.

Case 1; Let b 6= 0. By Theorem 3.4 for every k ∈ N there exist ik, jk ∈ N such

that

(i) tk ik = 1 and tk j = 0 for every j ∈ N \ {ik},

(ii) tk jk = 1 and tk j = 0 for every j ∈ N \ {jk}.

Put α = {i1, i2, . . .}, β = {j1, j2, . . .}, P = [T ][α,N] and Q = 1
b
[T ][β,N]. It is

clear that P and Q are infinite permutations and P and bQ are submatrices of

[T ], therefore (i) holds.

Case 2; Let b = 0. Then ti j ≥ 0 for all i, j ∈ N. For every m ∈ N, put

Xm = e1 + . . . + em, it is clear that Xm ≺b e1 and hence TXm ≺b Te1. By

using Lemma 2.1, it follows that

0 ≤

m
∑

j=1

ti j = (TXm)i ≤ maxTe1 = 1, ∀ i ∈ N,

where (TXm)i is the i
th component of TXm. Therefore the nonnegative infinite

series
∑∞

j=1 ti j is convergent and
∑∞

j=1 ti j ≤ 1 for every i ∈ N. Consequently

[T ] is a row substochastic matrix. Since a = 1, with an argument same as

the above [T ] has a submatrix which is an infinite permutation, therefore (ii)

holds. �
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